Geometric Sequence

- A geometric sequence is formed by multiplying each term after the first by a constant called the common ratio (r).
- Ex: 4, 12, 36, 108, ...
- r can be positive or negative.
- The common ratio can be found by dividing any term by the term before it.

Ex: What is r in each sequence:
1,4,16, 64, $256 \quad \Gamma=4$
$24,36,54,81,121.5 \quad r=\frac{36}{24}=\frac{3}{2}$
2000, 500, 125, $31.25 r=\frac{500}{2000}=\frac{1}{4}$
Ex: Find the next three terms: $2,-4, \stackrel{-2}{8}, \ldots$

$$
-16,32,-64
$$

- The general term of a geometric sequence is:

$$
\begin{aligned}
& \qquad t_{n}=t_{1} r^{n-1} \\
& t_{n}=\text { General term } \\
& t_{1}=\text { first term } \\
& r=\text { common ratio } \\
& n=\text { number of terms }
\end{aligned}
$$

Examples:

1. Given the sequence $6,18,54, \ldots$, find t_{11} (Find the $11^{\text {th }}$ term)

$$
\begin{aligned}
& t_{n}=t_{1} r^{n-1} \\
& t_{11}=6(3)^{11-1} \\
& t_{11}=6(3)^{10} \\
& t_{11}=354294
\end{aligned}
$$

$$
\begin{aligned}
& t_{1}=6 \\
& n=11 \\
& r=3
\end{aligned}
$$

2. Create a geometric sequence whose $5^{\text {th }}$ term is 48 .

$$
\begin{array}{lllll}
3 & 6 & 12 & \frac{24}{48} & \frac{48}{3} \\
\frac{3}{16} & \frac{3}{4} & 3 & 12
\end{array}
$$

3. Find the number of terms in $3,6,12, \ldots, 384$.

$$
\begin{array}{rlrl}
t_{n} & =t_{1} r^{n-1} & t_{1}=3 \\
\frac{384}{3} & =\frac{3(2)^{n-1}}{3} & r=2 \\
128 & =2^{n-1} & n=? \\
2^{7} & =2^{n-1} & t_{n}=384 \\
7 & =n-1 & \\
8 & =n & &
\end{array}
$$

4. In a geometric sequence, the first term is 4 and the third term is 324. Find t_{2}

$$
r= \pm 9
$$

$$
\begin{aligned}
t_{n}=t_{1} r^{n-1} & t_{1}=4 \\
324=4(r)^{3-1} & t_{3}=324 \\
81 & =r^{2} \\
\sqrt{81} & =r \\
+9 & =r \\
= & -4,-36
\end{aligned},
$$

5. In a geometric sequence, the second term is 28 and the fifth term is 1792. Determine the values of t_{1} and r, and list the first three terms of the sequence.

$$
\begin{aligned}
t_{n} & =t_{1} r^{n-1} \\
1792 & =28 r^{4-1} \\
64 & =r^{3} \\
4 & =r
\end{aligned}
$$

6. In nature, bacteria reproduce by splitting in two so that one cell gives rise to 2 , then 4 , then 8 , and so on. Suppose there were three bacteria originally present in a sample. Determine the general term that relates the number of the bacteria to the doubling period of the bacteria. State the values of t_{1} and r in the geometric sequence formed.

