Geometric Sequence Worksheet

1. State whether or not the sequence is geometric. If it is a geometric sequence state the common ratio.
a. $1,2,4,8,16 \ldots$
b. $4,9,16,25, \ldots$
c. $-3,2,7,12,17, \ldots$
d. $2,4,6,8,10, \ldots$
e. $6,0.6,0.06,0.006, \ldots$
2. State the common ratio and the next 3 terms of each.
a. $-1,-3,-9, \ldots$
b. $48,24,12, \ldots$
c. $25,-50,100, \ldots$
d. $\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \ldots$
3. For each geometric sequence, determine the indicated value.
a. $3,6,12, \ldots\left(\right.$ find $\left.t_{7}\right)$
b. $18,9,4.5, \ldots\left(\right.$ find $\left.t_{6}\right)$
c. $2, \frac{1}{2}, \frac{1}{8}, \ldots\left(\right.$ find $\left.t_{5}\right)$
4. Write the first 5 terms of a geometric sequence where:
a. The $6^{\text {th }}$ term is 64
b. The $1^{\text {st }}$ term is $\frac{3}{4}$
5. Given the following information, find the indicated values.

$$
t_{1}=-1 \text { and } r=-2
$$

i) Find t_{9}
ii) The last term is $\mathbf{- 4 0 9 6}$. How many terms in the sequence?
6. A ball is dropped from a height of 25 meters. After each bounce, the ball rises to 80 percent of the previous height.
a. Write the first 3 terms of a geometric sequence that models the height of the ball in meters.
b. To the nearest centimetre, to what height does the ball rise after the $5^{\text {th }}$ bounce?
c. To the nearest centimetre, to what height does the ball rise after the $10^{\text {th }}$ bounce?
d. After how many bounces does the ball rise to a height less than 1 meter?

