Geometric Series

- A geometric series is the expression for the sum of the terms of a geometric sequence.
- The sum of a geometric series can be determined using the formula:

- A variation to the formula if the first term, common ratio, and $n^{\text {th }}$ term are known is: (Used when n is unknown)

$$
\begin{aligned}
& \text { last term } \\
& t_{n} \\
& \quad S_{n}=\frac{r t_{n}-t_{1}}{r-1}, r \neq 1
\end{aligned}
$$

- There is a special notation that is used to represent a series called Sigma Notation: $\sum \nleftarrow$ Sum of
For example, the geometric series $20+\mathbf{4 0}+\mathbf{8 0}+\mathbf{1 6 0}$ has 4 terms, with the first term 20 and a common ratio of 2 . The general term can be written as: $\boldsymbol{t}_{\boldsymbol{n}}=\mathbf{2 0}(2)^{\boldsymbol{n - 1}} \quad t_{n}=t, r^{n-1}$
The sum of these 4 terms can be written with sigma

$$
\text { when } k=1
$$

$20(2)^{\circ}$
$20(1)$
first term
$\sum_{k=1}^{4} 10(2)^{k}$
when $k=1$
$10(2)^{\prime}$

Examples:

1. Determine the sum of the first $\underline{8}$ terms of the following geometric series.
$t_{1}=5$
a) $5+15+45+\ldots$

$$
r=3
$$

$$
\begin{aligned}
S_{8} & =\frac{t_{1}\left(r^{n}-1\right)}{r-1} \\
& =\frac{5\left(3^{8}-1\right)}{3-1} \\
& =\frac{5(6560)}{2} \\
S_{8} & =16400
\end{aligned}
$$

2. Determine the sum of the following geometric series.

$$
\begin{array}{rlrl}
\text { a) } \frac{1}{64}+\frac{1}{16}+\frac{1}{4}+\ldots 1024 & S_{n} & =\frac{r t_{n}-t_{1}}{r-1} \\
t_{1} & =\frac{1}{64} & & =\frac{4(1004)-\frac{1}{64}}{4-1} \\
t_{n} & =1024 \\
r & =\frac{1}{4} \div \frac{1}{16} & & =\frac{4096-\frac{1}{64}}{3} \\
\frac{1}{4} \times \frac{16}{1}=\frac{16}{4} & & =\underbrace{\frac{262146}{64} \div 3}_{87381} \\
r & =4
\end{array}
$$

3. For the geometric series:

$$
\sum_{k=1}^{n} 3(2)^{k}
$$

a) Write the first 4 terms of the series.

$$
\begin{array}{ll}
k=1 & 3(2)^{\prime}=6 \\
k=2 & 3(2)^{2}=12 \\
k=3 & 3(2)^{3}=24 \\
k=4 & 3(2)^{4}=48
\end{array}
$$

$$
\text { First } 4 \text { terms: }
$$

b) Determine the sum of the series when the last term is 12288.

$$
6+12+24+48+\ldots 12288
$$

$$
t_{1}=6
$$

$$
\begin{aligned}
S_{n} & =\frac{r t_{n}-t_{1}}{r-1} \\
& =\frac{2(12288)-6}{2-1} \\
& =\frac{24575}{1}=24570
\end{aligned}
$$

$$
r=2
$$

$$
t_{n}=12288
$$

Application
The format of a scrabble tournament is such that the losers of each round are eliminated from the next round. The winners continue to play until a final match determines the champion. If there are 512 participants, how many matches will be played?

$$
\frac{512}{2}=\frac{256}{\text { matches }}
$$

$$
\begin{aligned}
S_{n} & =\frac{r t_{n}-t_{1}}{r-1} \\
& =\frac{\frac{1}{2}(1)-256}{\frac{1}{2}-1} \\
& =\frac{-255 \frac{1}{2}}{-\frac{1}{2}} \\
S_{n} & =511 \text { matches }
\end{aligned}
$$

