Graphing Linear Equations Review

- we can graph linear functions (straight lines), using either of the methods given below:
a) intercept method
- finding the x and y-intercepts
- an x-intercept is the x-coordinate of the point where a line crosses the x-axis i.e. $(x, 0)$
- a y-intercept is the y-coordinate of the point where a line crosses the y-axis i.e. $(0, y)$
e.g. Graph the following.
a) $2 x+3 y=6$
(1) $2(0)+3 y=6 \quad$ (2) $2 x+3(0)=6$

y-intercept x-intercept
b) $4 x-y=4$

b) slope-intercept method

- rearrange your equation into $y=m x+b$ where \underline{m} is the slope number and \underline{b} is the y-intercept
- plot the y-intercept first
- use the slope number to determine a second point $\Rightarrow \frac{\text { rise }}{\text { run }}$
- connect the two points to form a line
e.g. Graph the following.
a) $3 y-2 x=3$

$$
\frac{3 y}{3}=\frac{2 x}{3}+\frac{3}{3}
$$

$$
y=\frac{2^{\text {rise }}}{3_{\text {ron }}}+11 y \text {-intercept }
$$

b) $3 x+y+1=0$

$$
y=\frac{-3 \times-1}{1 \text { ion }} y \text {-intercept }
$$

Verifying Solutions to Equations

- Plug in the x and y values to determine if the left side $=$ right side
- if the solution is not valid, you will end up with an untrue statement
- the following example shows how to verify that point $(1,3)$ is a solution to the system of linear equations $x+y=4$ and $3 x-y=0$

$4=4$ is true.

$0=0$ is true.
- therefore, $(1,3)$ is a solution to the system of linear equations $x+y=4$ and $3 x-y=0$
e.g. Verify that point $(\stackrel{x}{4}, 5)$ is a solution to each equation or system.
a)

$$
\begin{aligned}
3 x+5 y & =20 \\
3(4)+5(5) & =20 \\
12+25 & =20 \\
37 & \neq 20
\end{aligned}
$$

b)

$$
\begin{aligned}
& 4 x=21-y \\
& 4(4)=21-5 \\
& 16=16 \\
& \text { yes a Solution }
\end{aligned}
$$

c) $6 x-2 y=14$ and $3 x+y=17$

$$
\begin{array}{rr}
6(4)-2(5)=14 & 3(4)+5=17 \\
24-10=14 & 12+5=17 \\
14=14 & 17=17 \\
\text { yes a solution. }
\end{array}
$$

