Graphing Linear Equations Review

• we can graph linear functions (straight lines), using either of the methods given below:

a) intercept method

- finding the *x* and *y*-intercepts
 - an *x-intercept* is the *x*-coordinate of the point where a line crosses the *x*-axis <u>i.e.</u> (x,0)
 - a *y-intercept* is the *y*-coordinate of the point where a line crosses the *y*-axis <u>i.e.</u> (0, y)

<u>e.g.</u> Graph the following.

a)
$$2x+3y=6$$

(1) $2(0)+3y=6$
 $3y=6$
 $y-intercept$
b) $4x-y=4$
 $4(0)-y=4$
 $4x=7$
 $y=-4$
 $(y=-4)$
 $(y=-4)$

XY

b) slope-intercept method

- slope-intercept method rearrange your equation into y = mx + b where <u>m</u> is the slope number and b is the y-intercept
- plot the *y*-intercept first
- use the slope number to determine a second point \Rightarrow rise run
- connect the two points to form a line

e.g. Graph the following.

b)
$$3x + y + 1 = 0$$

 $y = -3x$
 $y - intercept$

Verifying Solutions to Equations

- Plug in the x and y values to determine if the left side = right side
- if the solution is not valid, you will end up with an untrue statement
- the following example shows how to verify that point (1, 3) is a solution to the system of linear equations x + y = 4 and 3x y = 0

• therefore, (1, 3) is a solution to the system of linear equations x + y = 4 and 3x - y = 0

<u>e.g.</u> Verify that point $(\overset{\times}{4}, \overset{\vee}{5})$ is a solution to each equation or system.

a) 3x + 5y = 20 3(4) + 5(5) = 20 12 + 25 = 20 $37 \neq 20$ Not a solution b) 4x = 21 - y y(y) = 21 - 5 16 = 16yes a Solution

c)
$$6x - 2y = 14$$
 and $3x + y = 17$
 $(a(4) - 2(5) = 14$ $3(4) + 5 = 17$
 $a(4) - 10 = 14$ $1a + 5 = 17$
 $14 = 14$ $17 = 17$
Ves a solution.