Characteristics of Exponential Functions

An exponential function is a function where \boldsymbol{x} is in the exponent. It can be written in the form $y=c^{x}$ Basic form

Ex: Consider the functions $y=2^{x}, y=3^{x}, y=0.5^{x} \& y=0.1^{x}$
a) State the domain and range
b) Any intercepts
c) Equation of the asymptote
d) Whether it is increasing or decreasing

Domain: $x \in \mathbb{R}$
Range: $y>0$
y-intercept $(0,1)$
horizontal asymptote: $y=0$

* increasing function
* exponential growth
\rightarrow bacteria
creasing

x	y
-2	100
-1	10
0	1
1	0.1

Domain: $x \in \mathbb{R}$
Range: $y>0$
y-intercept: $(0,1)$
asymptote: $y=0$

* decreasing function
* exponential decay
\rightarrow radioactive decay
half life \rightarrow amt of takes for a substance to be half of original amt.

NOTE: The graph of an exponential function such as, $y=c^{x}$, is increasing for $c>1$, decreasing for $0<c<1$, and neither increasing nor decreasing for $c=1$.

Example: What function of the form $y=c^{x}$ can be used to describe the graph shown?

Example: Under ideal circumstances, a certain bacteria population triples every week. This is modelled by the following exponential graph.
a) What are the domain \& range of this function?
b) Write the exponential growth model that relates the number, B, bacteria to the time, t, in weeks.
c) Determine approximately how many days it would take for the number of bacterial to
 increase to eight times the quantity on day 1 .
a) Domain: $x \geq 0$ Range: $y \geq 1$

c) we are looking for when this will be 8 times as big

$$
\begin{aligned}
& \text { Test: } B=3^{1.8}=7.22 \\
& B=3^{1.9}=8.06 \\
& B=3^{\frac{1.893}{1}}=8.0018 \\
& \therefore 1.893 \text { wis } \times 7=13.251 \text { days }
\end{aligned}
$$

