Steps to solve the following two step equations:
Add or Subtract first to isolate the term with \boldsymbol{x}, then multiply or divide to isolate the \boldsymbol{x} Check your answer.

Ex. Solve. Show your work. (Check your answer mentally)
a) $2 x-7 /=13$

$$
\begin{gathered}
+7+7 \\
\frac{2 x}{2}=\frac{20}{2} \\
x=10
\end{gathered}
$$

b) $-3 x+2=17$

$$
\begin{array}{rr}
3 x+2=17 & \text { c) } \frac{x}{3}+14=38 \\
-2-\sqrt{4}=-14 \\
-\frac{3 x}{-3}=\frac{15}{-3} & \frac{8 x}{8}=24 \cdot 3 \\
x=-5 & x=72
\end{array}
$$

e) $\frac{2}{3} x+1=9$
$-1 \quad-1$
$3 \cdot \frac{2}{3} x=8 \cdot 3$
$\frac{2 x}{2}=\frac{24}{2}$

$$
x=12
$$

f) $x+5=\frac{1}{2}$

$$
-5^{2}-5
$$

$$
x=\frac{1}{2}-\frac{5}{1}
$$

$$
x=\frac{1}{2}-\frac{10}{2}
$$

$$
x=-\frac{9}{2}
$$

Questions: Solve. Show your work!
1)

$$
\begin{aligned}
-5+7 x & =16 \\
-5 & +5 \\
\frac{7 x}{7} & =\frac{21}{7} \\
x & =3
\end{aligned}
$$

$$
\text { 4) } \begin{aligned}
-6 x-30 & =-10 \\
+30 & +30 \\
\frac{-4 x}{-16} & =\frac{20}{-6} \\
x & =\frac{-10}{3}
\end{aligned}
$$

$$
\frac{-10}{3}=\frac{10}{-3}=-\frac{10}{3}
$$

7) $\frac{x}{6}+11=-4$

$$
\begin{aligned}
& -x 1-11 \\
& \frac{6 x}{6}=-15(6) \\
& x=-90
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
4 / 4 x & =37 \\
-4 & -4 \\
\frac{3 x}{3} & =\frac{33}{3} \\
x & =11
\end{aligned}
$$

3)

$$
\begin{aligned}
-7 & =5 x-42 \\
42 & +/ 42 \\
\frac{35}{5} & =\frac{5 x}{5} \\
7 & =x
\end{aligned}
$$

5)

$$
\begin{aligned}
& \frac{x}{-4}-1 x=-2 \\
& +1 / 12 \\
& -\frac{4 x}{-4}=10(-4) \\
& x=-40
\end{aligned}
$$

$$
\text { 6) } \begin{aligned}
& 4=\frac{x}{3}+7 \\
&-7
\end{aligned}
$$

$$
(3)-3=\frac{x}{3}: 3
$$

$$
-9=x
$$

$$
\text { 8) } \begin{aligned}
& \frac{x}{-2}-5=-8 \\
&+5 \quad+5 \\
&-\frac{2 x}{-2}=-3(-2) \\
& x=6
\end{aligned}
$$

9)

$$
\begin{aligned}
& 5 x+2=\frac{3}{4}-2 \\
& -2 \\
& 5 x=\frac{3}{4}-\frac{2}{1} \\
& 5 x=\frac{3}{4}-\frac{8}{4} \\
& \frac{5 x}{5}=\frac{-5}{4} \div \frac{5}{1} \\
& x=-\frac{5}{4} \times \frac{1}{5} \\
& x=\frac{-5}{20} \\
& x=\frac{1}{4}
\end{aligned}
$$

