Transformations of Exponential Functions
Basic Function: $y=c^{x}$
Transformed Function: $f(x)=a(c)^{b(x-h)}+k$

- a - vertical stretch. If negative a reflection in the x-axis
- b - horizontal stretch. If negative, a reflection in the y-axis.
- h - horizontal translation
- k - vertical translation

Ex: Transform the graph of $y=4^{x}$ to sketch the graph of $y=\frac{1}{2}(4)^{-2(x+5)}-3$.
Describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts.
(1) State the parameters:
y $a=\frac{1}{2}$ stretch -d vertically by a factor of $\frac{1}{2}$
x $b=-2$ stretched horizontally by a factor of $\frac{1}{2}$ with a reflection in the y-axis
$x h=-5$ moved left 5
y $k=-3$ moved down 3
(2) Create a table of values

$$
\begin{aligned}
& y=4^{x} \\
& \begin{array}{c|ll}
x & y \\
0 & 1 \\
1 & 4 \\
2 & 16 \\
3 & 64
\end{array} \longrightarrow \begin{array}{c|c}
x & y \\
\hline-5 & -2 \frac{1}{2} \\
-5 \frac{1}{2} & -1 \\
-6 & 5 \\
-6 \frac{1}{2} & 29
\end{array}
\end{aligned}
$$

(3) Graph
d) Domain: $x \in \mathbb{R}$ Range i $y>-3$
 Horizontal Asymptote: $y=-3$ y-intercept: approaching $y=-3$ x-intercept: between $-5.5+-6$

Ex: The radioactive element americium (Am) is used in household smoke detectors. Am-241 has a half-life of approximately 432 years. The average smoke detector contains $200 \mu \mathrm{~g}$ of Am-241.
\rightarrow micrograms
a) What is the transformed exponential function that models the graph showing the radioactive decay of $200 \mu \mathrm{~g}$ of AM-241?
b) Identify how each of the parameters of the function relates to the transformed graph.

* need to understand the concept of "half-life"

$$
\begin{gathered}
\rightarrow 200 \mu \mathrm{~g}) 432 \text { years } \\
100 \mu \mathrm{~g} \sum_{4} 432 \text { years } \\
50 \mu \mathrm{~g}
\end{gathered}
$$

a) need to write the equation of the function:

$$
y=e_{t}^{x}
$$

b) $a=200$ vertical stretch of factor.
$b=\frac{1}{432}$ horizontal stretch

* No horizontal or vertical translations.

$$
a m t
$$

* because it it a half-life

$$
y=\frac{1}{2}^{\frac{t}{432}}
$$ the base (c) is $\frac{1}{2}$ $x t$ in years $200 \mu \mathrm{~g}$ is original amt

