- The graph below is an example of a system of linear inequalities.
\qquad
- when graphs of inequalities overlap, the region of overlap is called the intersection of the graphs
- use the following steps to graph a system of inequalities:

1. determine the location of your boundary lines (intercept method or slope-intercept method) $y=m x+b$
2. determine the type of boundary lines (solid or dashed)
3. shade the appropriate side of each inequality (above or below)
4. determine the intersection (region of overlap) $>\geq<\leq$
e.g. Solve $x+2 y \leq 4$ and $x-y>1$. *Rearrange each equation

$$
x+2 y \leq 4
$$

$$
\frac{\partial y}{2} \leqslant \frac{-x}{2}+\frac{4}{2}
$$

Solid Line shade Below

$$
x-y>1
$$

solution region.
e.g. Solve $y<2 x-2$ and $y \geq \frac{1}{2} x+2$.

Already in $y=m x+b$ for m

$$
y<\frac{2}{x} x-2
$$

Dashed Line Shade Below

$$
y \geq \frac{1}{2} x+2
$$

- we can confirm our solution by choosing a test point and plugging it into both inequalities.
- confirm the solution set for the system of inequalities above.

Test point $(4,5)$

$$
\begin{array}{ll}
y<2 x-2 & y \geq \frac{1}{2} x+2 \\
5<2(4)-2 & 5 \geq \frac{1}{2}(4)+2 \\
5<8-2 & 5 \geq 2+2 \\
5<6 & 5 \geq 4 \\
& \text { yes }
\end{array}
$$

Ex: Create a system of inequalities for the following graph:

Purple Line:

$$
\geq\left\{\begin{array}{l}
\text { Solid Line } \\
\text { Shaded above }
\end{array}\right.
$$

Green Line: Solid Line $\} \leq$ Shaded Below\} \leq
write in $y=m x+b$ form

$$
\begin{aligned}
& b=3 \\
& m=\frac{\text { rise }}{r_{u n}}=\frac{-2}{1}=-2 \\
& y \leq-2 x+3
\end{aligned}
$$

e.g. To raise funds to buy new instruments, the band committee has at most 500 T-shirts to sell. The T-shirts come in red or blue. Based on sales of the same T-shirts at a fundraiser five years ago, the committee expects to sell at least twice as many blue T -shirts as red T -shirts.
a) Define the variables and restrictions. Write a system of linear inequalities that models the situation.
(1) Define variables:

Let $b=\#$ of blue shirts
(3) $b+r \leq 500$
$r=\#$ of red shirts

$$
b \geq 2 r
$$

(2) r has to be a whole number $(r \in w)$
b has to be a whole number $(b \in w)$
b) Graph the system of inequalities. HINT: Rearrange your inequalities

c) Suggest a combination of T-shirts sales that could be made.

100 red	Test $\quad b \leq-r+500$	$b \geq 2 r$
300 blue		$300 \leq-100+500$
300	≤ 400	$300 \geq 2(100)$
	yes	$300 \geq 200$
		$y e s$.

100 red
300 blue

$$
\text { Test } \begin{aligned}
& b \leq-r+500 \\
& 300 \leq-100+500 \\
& 300 \leq 400 \\
& \text { yes }
\end{aligned}
$$

$b \geq 2 r$ $300 \geq 2(100)$
$300 \geq 200$ yes.

